sábado, 17 de agosto de 2024

Comparacion de protitpos de Sistemas WPT

 submarinos []

Comparación entre técnicas WPT bajo el agua. [1]

Comparación de parámetros del sistema UWPT de acoplador magnético tipo simetría rotacional
Comparación de parámetros del sistema UWPT de acoplador magnético tipo curvo. []
Comparación entre técnicas WPT bajo el agua.
Los valores que se indican en la tabla corresponden a resultados experimentales, salvo que se indique lo contrario. [16]

usos

Antecedentes. [7]

investigación

Parámetros detallados de la investigación típica de características de frecuencia
Tabla comparativa de obras relacionadas [8]
Resumen de la sección “Requisitos del sistema”. [8]

Energia y Datos [4]

COMPARISON BETWEEN THE REPORTED AND THE PROPOSED SWPDT SYSTEMS [17]
[18]


Medicos

ESULTADOS DE MEDICIÓN Y COMPARACIÓN DE RENDIMIENTO [14]
CPT applications deployment
PT applications deployment




Rectificadores y Antenas

  Comparación entre diferentes soluciones [13]


COMPARACIÓN DE RENDIMIENTO CON OTROS RECTIFICADORES DE MICROONDAS [5]

Resumen del rendimiento de la rectina publicado a 24 GHz o más [6]

PRINCIPALES RENDIMIENTOS DE LA RECTENA 2-D PROPUESTA [11]
Comparación de sistemas WPT de banda dual basados ​​en DGS [12]

TABLA COMPARATIVA ENTRE DISTINTAS CONFIGURACIONES DE RECTIFICADORES [15]

RF


file:///E:/UTA/UTA%20Septimo%20Semestre%202/Practicas/Papers/2019/Review%20TIP/%23Espa%C3%B1ol%20ijemaru-et-al-2022-wireless-power-transfer-and-energy-harvesting-in-distributed-sensor-networks-survey-opportunities%20(1).pdf

file:///E:/UTA/UTA%20Septimo%20Semestre%202/Practicas/Papers/2019/Review%20TIP/%23Espa%C3%B1ol%20ijemaru-et-al-2022-wireless-power-transfer-and-energy-harvesting-in-distributed-sensor-networks-survey-opportunities%20(1).pdf
file:///E:/UTA/UTA%20Septimo%20Semestre%202/Practicas/Papers/2019/Review%20TIP/%23Espa%C3%B1ol%20ijemaru-et-al-2022-wireless-power-transfer-and-energy-harvesting-in-distributed-sensor-networks-survey-opportunities%20(1).pdf
file:///E:/UTA/UTA%20Septimo%20Semestre%202/Practicas/Papers/2019/Review%20TIP/%23Espa%C3%B1ol%20ijemaru-et-al-2022-wireless-power-transfer-and-energy-harvesting-in-distributed-sensor-networks-survey-opportunities%20(1).pdf








Laser 

Resumen de la literatura de estudios LPT. [185]

Steinsiek et al. utilizando un láser Nd:YAG de 5 W pudimos transferir energía a un mini rover a una distancia de unos 80 m [185]

capacitivo

COMPARACIÓN DE ESTRATEGIAS DE TRANSFERENCIA DE DATOS Y POTENCIA INALÁMBRICA CAPACITIVA[10]


Bibliografia

[1] R. Guida, E. Demirors, N. Dave, and T. Melodia, “Underwater Ultrasonic Wireless Power Transfer: A Battery-Less Platform for the Internet of Underwater Things,” IEEE Trans Mob Comput, vol. 21, no. 5, pp. 1861–1873, May 2022, doi: 10.1109/TMC.2020.3029679.

[4] Y. Yao, P. Sun, X. Liu, Y. Wang, and Di. Xu, “Simultaneous Wireless Power and Data Transfer: A Comprehensive Review,” IEEE Trans Power Electron, vol. 37, no. 3, pp. 3650–3667, 2022, doi: 10.1109/TPEL.2021.3117854.
[5] F. Zhao, D. Inserra, G. Wen, J. Li, and Y. Huang, “A High-Efficiency Inverse Class-F Microwave Rectifier for Wireless Power Transmission,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 725–728, 2019, doi: 10.1109/LMWC.2019.2944525.
[6] B. T. Malik, V. Doychinov, A. M. Hayajneh, S. A. R. Zaidi, I. D. Robertson, and N. Somjit, “Wireless power transfer system for battery-less sensor nodes,” IEEE Access, vol. 8, pp. 95878–95887, 2020, doi: 10.1109/ACCESS.2020.2995783.
 [7] S. K. Oruganti, A. Khosla, and T. G. Thundat, “Wireless power-data transmission for industrial internet of things: Simulations and experiments,” IEEE Access, vol. 8, pp. 187965–187974, 2020, doi: 10.1109/ACCESS.2020.3030658.
[8] M. Zhumayeva, K. Dautov, M. Hashmi, and G. Nauryzbayev, “Wireless energy and information transfer in WBAN: A comprehensive state-of-the-art review,” Alexandria Engineering Journal, vol. 85. Elsevier B.V., pp. 261–285, Dec. 15, 2023. doi: 10.1016/j.aej.2023.11.030.
[9] H. Yigit and A. R. Boynuegri, “Pulsed Laser Diode Based Wireless Power Transmission Application: Determination of Voltage Amplitude, Frequency, and Duty Cycle,” IEEE Access, vol. 11, pp. 54544–54555, 2023, doi: 10.1109/ACCESS.2023.3281656.
[10] S. Nag, A. Koruprolu, S. M. Saikh, R. Erfani, and P. Mohseni, “Auto-Resonant Tuning for Capacitive Power and Data Telemetry Using Flexible Patches,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 1804–1808, Oct. 2020, doi: 10.1109/TCSII.2019.2955568.
[11] A. Okba, A. Takacs, and H. Aubert, “Compact rectennas for ultra-low-power wireless transmission applications,” IEEE Trans Microw Theory Tech, vol. 67, no. 5, pp. 1697–1707, May 2019, doi: 10.1109/TMTT.2019.2902552.
[12] F. Ferreira, M. Feldman, G. Bulla, V. Brusamarello, and I. Muller, “Compact Near Field Wireless Energy Transfer Systems Using Defected Ground Structures,” IEEE Journal of Microwaves, vol. 3, no. 3, pp. 951–961, Jul. 2023, doi: 10.1109/JMW.2023.3257122.
[13] M. Poveda-Garcia, J. Oliva-Sanchez, R. Sanchez-Iborra, D. Canete-Rebenaque, and J. L. Gomez-Tornero, “Dynamic wireless power transfer for cost-effective wireless sensor networks using frequency-scanned beaming,” IEEE Access, vol. 7, pp. 8081–8094, 2019, doi: 10.1109/ACCESS.2018.2886448.
[14] S. A. Rotenberg, S. K. Podilchak, P. D. H. Re, C. Mateo-Segura, G. Goussetis, and J. Lee, “Efficient Rectifier for Wireless Power Transmission Systems,” IEEE Trans Microw Theory Tech, vol. 68, no. 5, pp. 1921–1932, May 2020, doi: 10.1109/TMTT.2020.2968055.
[15] M. Najjarzadegan, E. H. Hafshejani, and S. Mirabbasi, “An Open-loop Double-Carrier Simultaneous Wireless Power and Data Transfer System,” 2019, [Online]. Available: https://www.researchgate.net/publication/332413578
[16] R. Guida, E. Demirors, N. Dave, and T. Melodia, “Underwater Ultrasonic Wireless Power Transfer: A Battery-Less Platform for the Internet of Underwater Things,” IEEE Trans Mob Comput, vol. 21, no. 5, pp. 1861–1873, May 2022, doi: 10.1109/TMC.2020.3029679.
[17] Y. Yao et al., “Analysis and Design of a Simultaneous Wireless Power and Data Transfer System Featuring High Data Rate and Signal-to-Noise Ratio,” IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10761–10771, Nov. 2021, doi: 10.1109/TIE.2020.3031518.
[18] D. Belo, D. C. Ribeiro, P. Pinho, and N. B. Carvalho, “A Selective, Tracking, and Power Adaptive Far-Field Wireless Power Transfer System,” IEEE Trans Microw Theory Tech, vol. 67, no. 9, pp. 3856–3866, Sep. 2019, doi: 10.1109/TMTT.2019.2913653.

No hay comentarios.:

Publicar un comentario