uchos académicos han estudiado la variación en el rendimiento de la
celda fotovoltaica, como el voltaje de circuito abierto, la corriente de
cortocircuito, el voltaje del punto de máxima potencia, la corriente y la
eficiencia de conversión fotoeléctrica con la irradiancia solar y la temperatura
a través de modelos y experimentos [157][158][159][160]
Como fuente de alimentación de entrada del convertidor CC-CC, si la
impedancia de salida equivalente de la célula fotovoltaica coincide con la
impedancia de entrada equivalente del convertidor CC-CC determina la
estabilidad del sistema LWPT. Para mantener la estabilidad del sistema
LWPT, la impedancia de salida de la celda fotovoltaica debe minimizarse
dentro del rango de frecuencia de funcionamiento que la impedancia de
entrada equivalente del convertidor CC-CC [156]
el margen de
estabilidad de magnitud aumenta y el margen de estabilidad de fase
disminuye con la frecuencia en la banda baja (1 Hz a 2 kHz) con el aumento de la frecuencia, la capacitancia
del filtro de entrada puede filtrar la perturbación. Sin embargo, cuando
la frecuencia es superior a 100 kHz, el margen de estabilidad de fase
no existirá [156]
[1] J. Huang, Y. Zhou, Z. Ning, and H. Gharavi, “Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects,” IEEE Wirel Commun, vol. 26, no. 4, pp. 163–169, Aug. 2019, doi: 10.1109/MWC.2019.1800378.
[2] M. L. Ku et al., “Advances in Energy Harvesting Communications: Past, Present, and Future Challenges,” IEEE Commun. Surveys & Tutorials, vol. 18, no. 2, Second Quarter 2016, pp. 1384–1412
[3] C. T. Rim and C. Mi, Dynamic Charging for Road-Powered Electric Vehicles (RPEVs), Wiley-IEEE Press, 2017
[4] L. Zhou et al., “Greening the Smart Cities: Energy-Efficient Massive Content Delivery via D2D Communications,” IEEE Trans. Industrial Informatics, vol. 14, no. 4, Apr. 2018, pp. 1626–34. [10] L. Zhou, “Mobile Device-to-Device Video Distribution: Theory and Application,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 12, no. 3, Mar. 2016, pp. 38:1–23.
[6] P. He et al., “Recursive Waterfilling for Wireless Links with Energy Harvesting Transmitters,” IEEE Trans. Vehicular Technology, vol. 63, no. 3, Mar. 2014, pp. 1232–41.
[7] O. Ozel et al., “Optimal Energy Allocation for Energy Harvesting Transmitters with Hybrid Energy Storage and Processing Cost,” IEEE Trans. Signal Processing, vol. 62, no. 12, June 2014, pp. 3232–45
[8] A. Laha, A. Kalathy, M. Pahlevani, and P. Jain, “A Comprehensive Review on Wireless Power Transfer Systems for Charging Portable Electronics,” Eng, vol. 4, no. 2. Multidisciplinary Digital Publishing Institute (MDPI), pp. 1023–1057, Jun. 01, 2023. doi: 10.3390/eng4020061.
[9] Lior, N. (2001). Power from space. Energy Conversion and Management, 42(15-17), 1769-1805.
[10] Clerckx, B., Bayguzina, E.: Waveform design for wireless power transfer. IEEE Trans. Signal Process. 64, 6313–6328 (2016)
[11] Clerckx, B., Bayguzina, E.: Low-complexity adaptive multisine waveform design for wireless power transfer. IEEE Antennas Wirel. Propag. Lett. 16, 2207–2210 (2017)
[12] . Huang, Y., Clerckx, B.: Waveform optimization for large-scale multi-antenna multi-sine wireless power transfer. In: 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2016)
[13] Cannon, B.L., Hoburg, J.F., Stancil, D.D., Goldstein, S.C.: Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 24, 1819–1825 (2009) 27. Hui, S.: Planar wireless charging t
[14] T. Helgesen and M. Haddara, “Wireless power transfer solutions for ‘Things’ in the internet of things,” in Advances in Intelligent Systems and Computing, Springer Verlag, 2019, pp. 92–103. doi: 10.1007/978-3-030-02686-8_8.
[15] A. W. S. Putra, H. Kato, and T. Maruyama, “Hybrid optical wireless power and data transmission system,” in 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 374–376. doi: 10.1109/WoW47795.2020.9291276.
[16] D. Wang, J. Zhang, S. Cui, Z. Bie, F. Chen, and C. Zhu, “The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives,” Renewable and Sustainable Energy Reviews, vol. 189. Elsevier Ltd, Jan. 01, 2024. doi: 10.1016/j.rser.2023.113910.
[17] Zargham M, Gulak PG. Maximum achievable efficiency in near-field coupled power-transfer systems. IEEE Transact. Biomedical Circuits and Syst. 2012;6: 228–45. https://doi.org/10.1109/TBCAS.2011.2174794.
[18] Song K, Lan Y, Wei R, Yang G, Yang F, Li W, et al. A control strategy for wireless EV charging system to improve weak coupling output based on variable inductor and capacitor. IEEE Trans Power Electron 2022;37:12853–64. https://doi.org/ 10.1109/TPEL.2022.3175936.
[19] Paul S, Chang J. Design of novel electromagnetic energy harvester to power a deicing robot and monitoring sensors for transmission lines. Energy Convers Manag 2019;197:111868.
[20] Wei G, Feng J, Zhang J, Wang C, Zhu C, Yurievich Ostanin S. An efficient power and data synchronous transfer method for wireless power transfer system using double-D coupling coil. IEEE Trans Ind Electron 2021;68:10643–53. https://doi. org/10.1109/TIE.2020.3038081.
[21] Sun Y, Yan P, Wang Z, Luan Y. The parallel transmission of power and data with the shared channel for an inductive power transfer system. IEEE Trans Power Electron 2015;31:5495–502. https://doi.org/10.1109/TPEL.2015.2497739.
[22] Yang L, Huang J, Feng B, Zhang F, Zhang Y, Li X, et al. Undersea wireless power and data transfer system with shared channel powered by marine renewable energy system. IEEE J. Emerg. Selected Topics in Circuits and Syst. 2022;12: 242–50. https://doi.org/10.1109/JETCAS.2022.3140954.
[23] Dong S, Du Guiping QD. Research status and development trend of electromagnetic compatibility of wireless power transmission system. Trans China Electrotech Soc 2020;35:2855–69
[24] Yao Y, Sun P, Liu X, Wang Y, Xu D. Simultaneous wireless power and data transfer: a comprehensive review. IEEE Trans Power Electron 2022;37:3650–67. https://doi.org/10.1109/TPEL.2021.3117854
[25] Wang P, Sun Y, Feng Y, Feng T, Fan Y, Li X. An improvement of SNR for simultaneous wireless power and data transfer system with full-duplex communication mode. IEEE Trans Power Electron 2021;37:2413–24.
[26] Yao Y, Tang C, Gao S, Wang Y, Alonso JM, Madawala UK, et al. Analysis and design of a simultaneous wireless power and data transfer system featuring high data rate and signal-to-noise ratio. IEEE Trans Ind Electron 2020;68:10761–71. https://doi.org/10.1109/TIE.2020.3031518
[27] Zeng Y, Lu C, Liu R, He X, Rong C, Liu M. Wireless power and data transfer system using multidirectional magnetic coupler for swarm AUVs. IEEE Trans Power Electron 2022;38:1440–4. https://doi.org/10.1109/TPEL.2022.3214318.
[28] Tang Y, Chen Y, Madawala UK, Thrimawithana DJ, Ma H. A new controller for bidirectional wireless power transfer systems. IEEE Trans Power Electron 2017; 33:9076–87. https://doi.org/10.1109/TPEL.2017.2785365.
[29] Lee J-Y, Han B-M. A bidirectional wireless power transfer EV charger using selfresonant PWM. IEEE Trans Power Electron 2014;30:1784–7. https://doi.org/ 10.1109/TPEL.2014.2346255.
[30] He X, Wang R, Wu J, Li W. Nature of power electronics and integration of power conversion with communication for talkative power. Nat Commun 2020;11:1–12. https://doi.org/10.1038/s41467-020-16262-0
[31] G. Chen, Y. Sun, J. Huang, B. Zhou, F. Meng, and C. Tang, “Wireless power and data transmission system of submarine cable-inspecting robot fish and its time-sharing multiplexing method,” Electronics (Switzerland), vol. 8, no. 8, Aug. 2019, doi: 10.3390/electronics8080838.
[32] K. Detka and K. Górecki, “Wireless Power Transfer—A Review,” Energies (Basel), vol. 15, no. 19, 2022, doi: 10.3390/en15197236.
[33] Rakhymbay, A.; Bagheri, M.; Lu, M. A simulation study on four different compensation topologies in EV wireless charging. In Proceedings of the International Conference on Sustainable Energy Engineering and Application (ICSEEA), Jakarata, Indonesia, 23–24 October 2017; pp. 66–73 http://doi.org/10.1109/ICSEEA.2017.8267689
[34] Wang, H.S.; Cheng, K.W.E.; Hu, J.F. An Investigation of Compensation Networks for Three-coil Wireless Power Transfer. In Proceedings of the 8th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, China, 7–10 December 2020; pp. 1–6.
[35] Geng, Y.; Sun, H.; Yang, Z.; Li, B.; Lin, F. A High Efficiency Charging Strategy for a Supercapacitor Using a Wireless Power Transfer System Based on Inductor/Capacitor/Capacitor (LCC) Compensation Topology. Energies 2017, 10, 135. http://doi.org/10.3390/en10010135
[36] Moradewicz, A.; Mi´skiewicz, R. Systemy bezstykowanego zasilania komputerów przeno´snych. Pr. Inst. Elektrotechniki 2008, 236, 47–62.
[37] Kevin, L. Comparative Study of Different Coil Geometries for Wireless Power Transfer. 2016. Available online: https://www.google. com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiXof739aX6AhUBtYsKHbwWDMYQFnoECAgQAQ& url=http%3A%2F%2Futpedia.utp.edu.my%2F17133%2F1%2FFinal%2520Dissertation%2520%2528Final%2529%2520-%252 0Lau%2520Kevin%252016392.pdf&usg=AOvVaw3IoxNm3qaKiYuzHRc362S9 (accessed on 26 September 2022).
[38] Murakami, R.; Inamori, M.; Morimoto, M. Effects of Q factor on wireless power transmission by magnetic resonant coupling. In Proceedings of the IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 21–23 October 2016; pp. 139–143. http://doi.org/10.1109/ICPRE.2016.7871189
[39] Wen, H.; Zhang, C. Investigation on transmission efficiency for magnetic materials in a wireless power transfer system. In Proceedings of the IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, Australia, 9–12 June 2015; pp. 249–253
[40] Iqteit, N.; Yahya, K.; Khan, S.A. Wireless Power Charging in Electrical Vehicles; Intechopen: London, UK, 2021.
[41] Compensation Parameters Optimization of Wireless Power Transfer for Electric Vehicles. Electronics
[42] Van Wageningen, D.; Staring, T. The Qi Wireless Power Standard. In Proceedings of the 14th International Power Electronics and Motion Control Conference (EPE-PEMC 2010), Ohrid, Macedonia, 6–8 September 2010; pp. 15–25
[43] Li, S.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. https://ieeexplore.ieee.org/document/6804648/
[44] Zhang, B.; Carlson, R.B.; Smart, J.G.; Dufek, E.J.; Liaw, B. Challenges of future high power wireless power transfer for light-duty electric vehicles—Technology and risk management. eTransportation 2019, 2, 100012 https://linkinghub.elsevier.com/retrieve/pii/S2590116819300128
[45] A. Triviño, J. M. González-González, and J. A. Aguado, “Wireless power transfer technologies applied to electric vehicles: A review,” Energies, vol. 14, no. 6. MDPI AG, Mar. 02, 2021. doi: 10.3390/en14061547.
[46]Wang, C.S.; Covic, G.A.; Stielau, O.H. Investigating an LCL load resonant inverter for inductive power transfer applications. IEEE Trans. Power Electron. 2004, 19, 995–1002. http://dx.doi.org/10.1109/TPEL.2004.830098
[47] Hao, H.; Covic, G.A.; Boys, J.T. An approximate dynamic model of LCL-T-based inductive power transfer power supplies. IEEE Trans. Power Electron. 2014, 29, 5554–5567. http://dx.doi.org/10.1109/TPEL.2013.2293138
[48] Keeling, N.A.; Covic, G.A.; Boys, J.T. A unity-power-factor IPT pickup for high-power applications. IEEE Trans. Ind. Electron. 2010, 57, 744–751. http://dx.doi.org/10.1109/TIE.2009.2027255
[49] Madawala, U.K.; Thrimawithana, D.J. A bidirectional inductive power interface for electric vehicles in V2G systems. IEEE Trans. Ind. Electron. 2011, 58, 4789–4796 https://ieeexplore.ieee.org/document/5711663
[50] Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology; International Standard SAE J2954 202010; SAE International: Warrendale, PA, USA, 2020.
[51] Zucca, M.; Cirimele, V.; Bruna, J.; Signorino, D.; Laporta, E.; Colussi, J.; Angel, M.; Tejedor, A.; Fissore, F.; Pogliano, U. Assessment of the Overall Efficiency in WPT Stations for Electric Vehicles. Sustainability 2021, 13, 2436. http://dx.doi.org/10.3390/su13052436
[52] Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C.C. A Four-Plate Compact Capacitive Coupler Design and LCL-Compensated Topology for Capacitive Power Transfer in Electric Vehicle Charging Application. IEEE Trans. Power Electron. 2016, 31, 8541–8551.
[53] Vu, V.B.; Dahidah, M.; Pickert, V.; Phan, V.T. An Improved LCL-L Compensation Topology for Capacitive Power Transfer in Electric Vehicle Charging. IEEE Access 2020, 8, 27757–27768. https://ieeexplore.ieee.org/document/8984362/
[54] Luo, B.; Long, T.; Guo, L.; Dai, R.; Mai, R.; He, Z. Analysis and Design of Inductive and Capacitive Hybrid Wireless Power Transfer System for Railway Application. IEEE Trans. Ind. Appl. 2020, 56, 3034–3042 http://dx.doi.org/10.1109/TIA.2020.2979110
[55] Charging. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1015–1025 http://dx.doi.org/10.1049/iet-pel.2016.0655
[56] Lu, K.; Nguang, S.K.; Ji, S.; Wei, L. Design of auto frequency tuning capacitive power transfer system based on class-E2 dc/dc converter. IET Power Electron. 2017, 10, 1588–1595 http://dx.doi.org/10.1049/iet-pel.2016.0655
[57] Choi, J.; Tsukiyama, D.; Tsuruda, Y.; Davila, J.M.R. High-Frequency, High-Power Resonant Inverter With eGaN FET for Wireless Power Transfer. IEEE Trans. Power Electron. 2018. 33, 1890–189 https://ieeexplore.ieee.org/document/8010879/
[58] Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A Double-Sided LCLC-Compensated Capacitive Power Transfer System for Electric Vehicle Charging. IEEE Trans. Power Electron. 2015, 30, 6011–6014 https://ieeexplore.ieee.org/document/7127049
[59] .Qian, Z.; Yan, R.; Wu, J.; He, X. Full-Duplex High-Speed Simultaneous Communication Technology for Wireless EV Charging. IEEE Trans. Power Electron. 2019, 34, 9369–9373
[60] Kumar, M.S.; Revankar, S.T. Development scheme and key technology of an electric vehicle: An overview. Renew. Sustain. Energy Rev. 2017, 70, 1266–1285 http://dx.doi.org/10.1016/j.rser.2016.12.027
[61] Triviño-Cabrera, A.; Lin, Z.; Aguado, J. Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV Wireless Charger. Energies 2018, 11, 538 http://dx.doi.org/10.3390/en11030538
[62] Tajmohammadi, M.; Mazinani, S.M.; Nikooghadam, M.; Al-Hamdawee, Z. LSPP: Lightweight and Secure Payment Protocol for Dynamic Wireless Charging of Electric Vehicles in Vehicular Cloud. IEEE Access 2019, 7, 148424–148438. https://ieeexplore.ieee.org/document/8862812
[63] Hwang, K.; Park, J.; Kim, D.; Park, H.H.; Kwon, J.H.; Kwak, S.I.; Ahn, S. Autonomous coil alignment system using fuzzy steering control for electric vehicles with dynamic wireless charging. Math. Probl. Eng. 2015, 2015, 205285 http://dx.doi.org/10.1155/2015/205285
[64] Jeong, S.Y.; Thai, V.X.; Park, J.H.; Rim, C.T. Self-Inductance-Based Metal Object Detection with Mistuned Resonant Circuits and Nullifying Induced Voltage for Wireless EV Chargers. IEEE Trans. Power Electron. 2019, 34, 748–758 https://ieeexplore.ieee.org/document/8309279
[65] Pavo, J.; Badics, Z.; Bilicz, S.; Gyimothy, S. Efficient Perturbation Method for Computing Two-Port Parameter Changes Due to Foreign Objects for WPT Systems. IEEE Trans. Magn. 2018, 54, 7204604 https://ieeexplore.ieee.org/document/8122030
[66] Janjic, A.; Velimirovic, L.; Stankovic, M.; Petrusic, A. Commercial electric vehicle fleet scheduling for secondary frequency control. Electr. Power Syst. Res. 2017, 147, 31–41. https://www.sciencedirect.com/science/article/abs/pii/S0378779617300767?via%3Dihub
[67] Hoehne, C.G.; Chester, M.V. Optimizing plug-in electric vehicle and vehicle-to-grid charge scheduling to minimize carbon emissions. Energy 2016, 115, 646–657 https://www.sciencedirect.com/science/article/abs/pii/S0360544216312981?via%3Dihub
[68] Tabatabaee, S.; Mortazavi, S.S.; Niknam, T. Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources. Energy 2017, 121, 480–490 https://www.sciencedirect.com/science/article/abs/pii/S0360544216319296?via%3Dihub
[69] Triviño-Cabrera, A.; Aguado, J.A.; Torre, S.d.l. Joint routing and scheduling for electric vehicles in smart grids with V2G. Energy 2019, 175, 113–122. https://www.sciencedirect.com/science/article/abs/pii/S0360544219303901?via%3Dihub
[70] Yang, C.; Lou, W.; Yao, J.; Xie, S. On Charging Scheduling Optimization for a Wirelessly Charged Electric Bus System. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1814–1826 https://ieeexplore.ieee.org/document/8027061
[71] Li, C.; Ding, T.; Liu, X.; Huang, C. An Electric Vehicle Routing Optimization Model with Hybrid Plug-In and Wireless Charging Systems. IEEE Access 2018, 6, 27569–27578 https://ieeexplore.ieee.org/document/8360095
[72] Jin, Y.; Xu, J.; Wu, S.; Xu, L.; Yang, D. Enabling the Wireless Charging via Bus Network: Route Scheduling for Electric Vehicles. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1827–1839. https://ieeexplore.ieee.org/document/9205293
[73] S. Ping, A. P. Hu, S. Malpas, and D. Budgett, “A frequency control method for regulating wireless power to implantable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 1, pp. 22–29, Mar. 2008. [74] J. Wu, C. Zhao, Z. Lin, J. Du, Y. Hu, and X. He, “Wireless power and data transfer via a common inductive link using frequency division multiplexing,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7810–7820, Dec. 2015
[74] M. Uddin and T. Nadeem, “RF-beep: A light ranging scheme for smart devices,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun., San Diego, CA, USA, 2013, pp. 114–122.
[75] Laha, A. Modelling and Efficiency Optimization of Wireless Power Transfer Systems having One or Two Receivers. Master’s Thesis, Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON, Canada, September 2020.
[76] Fu, M.; Zhang, T.; Ma, C.; Zhu, X. Efficiency and Optimal Loads Analysis for Multiple-Receiver Wireless Power Transfer Systems. IEEE Trans. Microw. Theory Tech. 2015, 63, 801–812. https://ieeexplore.ieee.org/document/7039263
[77] Yao, Y.; Wang, Y.; Liu, X.; Lin, F.; Xu, D. A Novel Parameter Tuning Method for a Double-Sided LCL Compensated WPT System with Better Comprehensive Performance. IEEE Trans. Power Electron. 2018, 33, 8525–8536.
[78] Deng, J.; Mao, Q.; Wang, W.; Li, L.; Wang, Z.; Wang, S.; Guidi, G. Frequency and Parameter Combined Tuning Method of LCC–LCC Compensated Resonant Converter with Wide Coupling Variation for EV Wireless Charger. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 956–968 https://ieeexplore.ieee.org/document/9422798/
[79] Deng, J.; Li, W.; Nguyen, T.D.; Li, S.; Mi, C.C. Compact and Efficient Bipolar Coupler for Wireless Power Chargers: Design and Analysis. IEEE Trans. Power Electron. 2015, 30, 6130–6140. https://ieeexplore.ieee.org/document/7072471/
[80] Wang, Y.; Yao, Y.; Liu, X.; Xu, D.; Cai, L. An LC/S Compensation Topology and Coil Design Technique for Wireless Power Transfer. IEEE Trans. Power Electron. 2018, 33, 2007–2025 https://ieeexplore.ieee.org/document/7911363/
[81] Sugiyama, R.; Duong, Q.; Okada, M. kQ-product analysis of multiple-receiver inductive power transfer with cross-coupling. In Proceedings of the International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), Athens, Greece, 1–3 March 2017; pp. 327–330 https://ieeexplore.ieee.org/document/7915392/
[82] Wang, Y.; Wang, H.; Liang, T.; Zhang, X.; Xu, D.; Cai, L. Analysis and design of an LCC/S compensated resonant converter for inductively coupled power transfer. In Proceedings of the IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, 7–10 August 2017; pp. 1–5 https://ieeexplore.ieee.org/document/8080829/
[83] Li, S.; Li, W.; Deng, J.; Nguyen, T.D.; Mi, C.C. A Double-Sided LCC Compensation Network and Its Tuning Method for Wireless Power Transfer. IEEE Trans. Veh. Technol. 2015, 64, 2261–2273 https://ieeexplore.ieee.org/document/6876154/
[84] Campi, T.; Cruciani, S.; Maradei, F.; Feliziani, M. Near-Field Reduction in a Wireless Power Transfer System Using LCC Compensation. IEEE Trans. Electromagn. Compat. 2017, 59, 686–694. https://ieeexplore.ieee.org/document/7809133/
[86] Zhong, W.; Hui, S.Y. Reconfigurable Wireless Power Transfer Systems with High Energy Efficiency Over Wide Load Range. IEEE Trans. Power Electron. 2018, 33, 6379–6390 https://ieeexplore.ieee.org/document/8024081/
[87]Patil, D.; Sirico, M.; Gu, L.; Fahimi, B. Maximum efficiency tracking in wireless power transfer for battery charger: Phase shift and frequency control. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016 pp. 1–8 https://ieeexplore.ieee.org/document/7855234/
[88] Choi, J.; Xu, J.; Makhoul, R.; Davila, J.M.R. Implementing an Impedance Compression Network to Compensate for Misalignments in a Wireless Power Transfer System. IEEE Trans. Power Electron. 2019, 34, 4173–4184
[89] Zhong, W.X.; Hui, S.Y.R. Maximum Energy Efficiency Tracking for Wireless Power Transfer Systems. IEEE Trans. Power Electron. 2015, 30, 4025–4034. https://ieeexplore.ieee.org/document/6882833/
[91] Li, H.; Li, J.; Wang, K.; Chen, W.; Yang, X. A Maximum Efficiency Point Tracking Control Scheme for Wireless Power Transfer Systems Using Magnetic Resonant Coupling. IEEE Trans. Power Electron. 2015, 30, 3998–4008
[92] Fu, M.; Yin, H.; Liu, M.; Wang, Y.; Ma, C. A 6.78 MHz Multiple-Receiver Wireless Power Transfer System with Constant Output Voltage and Optimum Efficiency. IEEE Trans. Power Electron. 2018, 33, 5330–5340 https://ieeexplore.ieee.org/document/7976358
94. Fu, M.; Zhang, T.; Zhu, X.; Luk, P.C.; Ma, C. Compensation of Cross Coupling in Multiple-Receiver Wireless Power Transfer
Systems. IEEE Trans. Ind. Inform. 2016, 12, 474–482. [CrossRef]
95. Pantic, Z.; Lee, K.; Lukic, S.M. Receivers for Multifrequency Wireless Power Transfer: Design for Minimum Interference. IEEE J.
Emerg. Sel. Top. Power Electron. 2015, 3, 234–241. [CrossRef]
96. Zhong, W.; Hui, S.Y.R. Auxiliary Circuits for Power Flow Control in Multifrequency Wireless Power Transfer Systems with
Multiple Receivers. IEEE Trans. Power Electron. 2015, 30, 5902–5910. [CrossRef]
97. Zhang, Y.; Lu, T.; Zhao, Z.; He, F.; Chen, K.; Yuan, L. Selective Wireless Power Transfer to Multiple Loads Using Receivers of
Different Resonant Frequencies. IEEE Trans. Power Electron. 2015, 30, 6001–6005. [CrossRef]
98. Moreland, C. Coil Basics. 2006. Available online: http://www.geotech1.com/pages/metdet/info/coils.pdf (accessed on 6
February 2023).
[99] Pratik, U.; Varghese, B.J.; Azad; A.; Pantic, Z. Optimum Design of Decoupled Concentric Coils for Operation in Double-Receiver Wireless Power Transfer Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 1982–1998. https://ieeexplore.ieee.org/document/8469034
100. Zhuo, K.; Luo, B.; Zhang, Y.; Zuo, Y. Multiple receivers wireless power transfer systems using decoupling coils to eliminate
cross-coupling and achieve selective target power distribution. IEICE Electron. Express 2019, 16, 20190491. [CrossRef]
101. Kim, Y.; Ha, D.; Chappell, W.J.; Irazoqui, P.P. Selective Wireless Power Transfer for Smart Power Distribution in a Miniature-Sized
Multiple-Receiver System. IEEE Trans. Ind. Electron. 2016, 63, 1853–1862. [CrossRef]
102. Fu, M.; Yin, H.; Ma, C. Megahertz Multiple-Receiver Wireless Power Transfer Systems with Power Flow Management and
Maximum Efficiency Point Tracking. IEEE Trans. Microw. Theory Tech. 2017, 65, 4285–4293. [CrossRef]
103. Song, J.; Liu, M.; Ma, C. Analysis and Design of a High-Efficiency 6.78-MHz Wireless Power Transfer System with Scalable
Number of Receivers. IEEE Trans. Ind. Electron. 2020, 67, 8281–8291. [CrossRef]
104. Cui, D.; Imura, T.; Hori, Y. Cross coupling cancellation for all frequencies in multiple-receiver wireless power transfer systems.
In Proceedings of the International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016;
pp. 48–49.
105. Dai, X.; Li, X.; Li, Y. Cross-coupling coefficient estimation between multi-receivers in WPT system. In Proceedings of the IEEE PELS
Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, 20–22 May 2017; pp. 1–4. [CrossRef]
106. Xie, X.; Xie, C.; Li, Y.; Wang, J.; Du, Y.; Li, L. Adaptive Decoupling between Receivers of Multireceiver Wireless Power Transfer
System Using Variable Switched Capacitor. IEEE Trans. Transp. Electrif. 2021, 7, 2143–2155. [CrossRef]
107. Ishihara, M.; Fujiki, K.; Umetani, K.; Hiraki, E. Autonomous System Concept of Multiple-Receiver Inductive Coupling Wireless
Power Transfer for Output Power Stabilization Against Cross-Interference Among Receivers and Resonance Frequency Tolerance.
IEEE Trans. Ind. Appl. 2021, 57, 3898–3910. [CrossRef]
[108] Laha, A.; Kalathy, A.; Jain, P. Efficiency Optimization of Wireless Power Transfer Systems having Multiple Receivers with Cross-Coupling by Resonant Frequency Adjustment of Receivers. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 5735–5742. https://ieeexplore.ieee.org/document/9594955/
[109] Laha, A.; Kalathy, A.; Pahlevani, M.; Jain, P. A Real-Time Maximum Efficiency Tracker for Wireless Power Transfer Systems with Cross-Coupling. Electronics 2022, 11, 3928 https://www.mdpi.com/2079-9292/11/23/3928
[110] de Rooij, M.A. The ZVS voltage-mode class-D amplifier, an eGaN® FET-enabled topology for highly resonant wireless energy transfer. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 1608–1613. http://dx.doi.org/10.1109/APEC.2015.7104562
[111] H. Liu et al., “Push the limit of WiFi based localization for smartphones,” in Proc. 18th Int. Conf. Mobile Comput. Netw., Istanbul, Turkey, 2012, pp. 305–316
[112] ] S.-W. Dong et al., “Hybrid Mode Wireless Power Transfer for Wireless Sensor Network,” IEEE Wireless Power Transfer Conference (WPTC)., 2019, doi: 10.1109/WPTC45513.2019.9055665
[113] D. Belo, D. C. Ribeiro, P. Pinho, and N. B. Carvalho, “A Selective, Tracking, and Power Adaptive Far-Field Wireless Power Transfer System,” IEEE Trans Microw Theory Tech, vol. 67, no. 9, pp. 3856–3866, Sep. 2019, doi: 10.1109/TMTT.2019.2913653.
[114] J. Ansari, D. Pankin, and P. Mahonen, “Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications,” in Proc. IEEE 19th Int. Symp. Pers., Indoor Mobile Radio Commun., Cannes, France, Sep. 2008, pp. 1–5.
[115] S. von der Mark and G. Boeck, “Ultra low power wakeup detector for sensor networks,” in IEEE MTT-S Int. Microw. Symp. Dig., Brazil, Nov. 2007, pp. 865–868.
[116] S. H. Lee, Y. S. Bae, and L. Choi, “The design of a ultra-low power RF wakeup sensor for wireless sensor networks,” J. Commun. Netw., vol. 18, no. 2, pp. 201–209, Apr. 2016.
[117] A. Roy et al., “A 6.45μWself-Powered SoC with integrated energyharvesting power management and ULP asymmetric radios for portable biomedical systems,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 6, pp. 862–874, Dec. 2015.
[118] C. Balanis, Antenna Theory, Analysis and Design, 2nd ed. New York, NY, USA: Wiley, 1997.
[119] K.-M. Lee, R.-S. Chu, and S.-C. Liu, “A built-in performancemonitoring/fault isolation and correction (PM/FIC) system for active phased-array antennas,” IEEE Trans. Antennas Propag., vol. 41, no. 11, pp. 1530–1540, Nov. 1993.
[120] J. Xu and R. Zhang, “Energy beamforming with one-bit feedback,” IEEE Trans. Signal Process., vol. 62, no. 20, pp. 5370–5381, Oct. 2014
[121] K. W. Choi, D. I. Kim, and M. Y. Chung, “Received power-based channel estimation for energy beamforming in multiple-antenna RF energy transfer system,” IEEE Trans. Signal Process, vol. 65, no. 6, pp. 1461–1476, Mar. 2017.
[122] R. Correia, A. Boaventura, and N. Borges Carvalho, “Quadrature amplitude backscatter modulator for passive wireless sensors in IoT applications,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 4, pp. 1103–1110, Apr. 2017
[123] S. Farzeen, G. Ren, and C. Chen, “An ultra-low power ring oscillator for passive UHF RFID transponders,” in Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst., Seattle, WA, USA, Aug. 2010, pp. 558–561
[124] M. Z. Chaari and S. Al-Maadeed, “Wireless Power Transmission for the Internet of Things (IoT),” in 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies, ICIoT 2020, Institute of Electrical and Electronics Engineers Inc., Feb. 2020, pp. 549–554. doi: 10.1109/ICIoT48696.2020.9089547
[125] Mohamed M. Mansour and Haruichi Kanaya, “ Novel L-Slot Matching
Circuit Integrated with Circularly Polarized Rectenna for Wireless
Energy Harvesting,” MDPI, Electronics 8, 651, June 2019.
[126] Manolis, Demosthenes, Dimitrios, “ Discone Rectenna Implementation
for Broadband RF Energy Harvesting,” International Conference on
Modern Circuits and Systems Technologies (MOCAST), 13-15 May
2019.
[127] Achraf, Romain, Marjorie, “ Energy Harvesting with 2.45 GHz Rectenna
for urban application,” 25th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Bordeaux, France, 9-12 December
2018
[128] Yanyan Shi, Jianwei Jing, Yue Fan, Lan Yang, and Meng Wang, “
Design of a Novel Compact and Efficient Rectenna For WiFi,” Energy
Harvesting Progress In Electromagnetics Research C, Vol. 83, 5770,
2018
[129] H. Wu, H. Tian, G. Nie, and P. Zhao, “Wireless Powered Mobile Edge Computing for Industrial Internet of Things Systems,” IEEE Access, vol. 8, pp. 101539–101549, 2020, doi: 10.1109/ACCESS.2020.2995649.
[130] X. He et al., “Wireless power and information dual transfer system via magnetically coupled resonators,” Communications Engineering, vol. 3, no. 1, Jan. 2024, doi: 10.1038/s44172-023-00154-4.
[131] Dai, X., Li, X., Li, Y. & Hu, A. P. Maximum efficiency tracking for wireless
power transfer systems with dynamic coupling coefficient estimation. IEEE
Trans. Power Electron. 33, 5005–5015 (2017).
[132] Wang, R., He, X., Wu, J., Zhang, R. & Li, W. Power and signal dual
modulation with info nature of power converters. IEEE J. Emerg. Sel. Topics
Power Electron. 11, 588–601 (2023).
[133]. Sebastián, J., Lamar, D. G., Aller, D. G., Rodríguez, J. & Miaja, P. F. On the
role of power electronics in visible light communication. IEEE J. Emerg. Sel.
Topics Power Electron. 6, 1210–1223 (2018).
[134]. Zhu, Y., Wu, J., Wang, R., Lin, Z. & He, X. Embedding power line
communication in photovoltaic optimizer by modulating data in power
control loop. IEEE Trans. Ind. Electron. 66, 3948–3958 (2019).
[135]. Zhang, R., Chen, J., Wang, R., Lin, Z. & He, X. Embedding ofdm-based carrier
communication into power control loop of converter in dc microgrids. IEEE
Trans. Ind. Electron. 69, 6914–6924 (2022)
[136] Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a
nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).
[137] . Tebianian, H., Salami, Y., Jeyasurya, B. & Quaicoe, J. E. A 13.56-mhz fullbridge class-d zvs inverter with dynamic dead-time control for wireless power
transfer systems. IEEE Trans. Ind. Electron. 67, 1487–1497 (2020).
[138] Liu, S., Liu, M., Yang, S., Ma, C. & Zhu, X. A novel design methodology for
high-efficiency current-mode and voltage-mode class-e power amplifiers in
wireless power transfer systems. IEEE Trans. Power Electron. 32, 4514–4523
(2017)
[139] Zhou, J., Zhang, B., Xiao, W., Qiu, D. & Chen, Y. Nonlinear parity-timesymmetric model for constant efficiency wireless power transfer: application
to a drone-in-flight wireless charging platform. IEEE Trans. Ind. Electron. 66,
4097–4107 (2019).
[140] S. K. Oruganti, F. Liu, D. Paul, J. Liu, J. Malik, K. Feng, H. Kim, Y. Liang,
T. Thundat, and F. Bien, ‘‘Experimental realization of zenneck type wavebased non-radiative, non-coupled wireless power transmission,’’ Sci. Rep.,
vol. 10, no. 1, Dec. 2020, Art. no. 925, doi: 10.1038/s41598-020-57554-1.
[141] S. K. Oruganti, A. Khosla, and T. G. Thundat, “Wireless power-data transmission for industrial internet of things: Simulations and experiments,” IEEE Access, vol. 8, pp. 187965–187974, 2020, doi: 10.1109/ACCESS.2020.3030658.
[142] H. Hu, Y. Hu, C. Chen, and J. Wang, ‘‘A system of two piezoelectric
transducers and a storage circuit for wireless energy transmission through
a thin metal wall,’’ IEEE Trans. Ultrason., Ferroelectr., Freq. Control,
vol. 55, no. 10, pp. 2312–2319, Oct. 2008, doi: 10.1109/TUFFC.930.
[143] 15] D. J. Graham, J. A. Neasham, and B. S. Sharif, ‘‘Investigation of
methods for data communication and power delivery through metals,’’
IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4972–4980, Oct. 2011,
doi: 10.1109/TIE.2010.2103535.
[144] W. Zhou, Y.-G. Su, L. Huang, X.-D. Qing, and A. P. Hu, ‘‘Wireless
power transfer across a metal barrier by combined capacitive and inductive
coupling,’’ IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 4031–4041,
May 2019, doi: 10.1109/TIE.2018.2849991.
[145] H. Guo and K. D. Song, ‘‘Reliable through-metal wireless communication using magnetic induction,’’ IEEE Access, vol. 7, pp. 115428–115439,
2019, doi: 10.1109/ACCESS.2019.2934418
[146] J.-Q. Zhu, Y.-L. Ban, Y. Zhang, Z. Yan, R.-M. Xu, and C. C. Mi, ‘‘Threecoil wireless charging system for metal-cover smartphone applications,’’
IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4847–4858, May 2020,
doi: 10.1109/TPEL.2019.2944845.
[147] . Rakia, H. Yang, F. Gebali and M.-S. Alouini, “Optimal design of
dual-hop VLC/RF communication system with energy harvesting,” IEEE
Commun. Lett., vol. 20, no. 10, pp. 1979–1982, Oct. 2016
[148] S.-M. Kim, and J.-S. Won, “Simultaneous reception of visible light
communication and optical energy using a solar cell receiver,” 2013
International Conference on ICT Convergence (ICTC), Jeju, 2013, pp.
896-897
[149] A. M. Abdelhady, O. Amin, A. Chaaban, and M.-S. Alouini, “Resource allocation for outdoor visible light communications with energy harvesting
capabilities,” 2017 IEEE Globecom Workshops (GC Wkshps), Singapore,
2017, pp. 1–6
[150] J. I. de O. Filho, A. Trichili, B. S. Ooi, M.-S. Alouini, and K. N. Salama, “Towards Self-Powered Internet of Underwater Things Devices,” Jul. 2019, [Online]. Available: http://arxiv.org/abs/1907.11652
[151] Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solarpanel receiver for optical wireless communications with simultaneous
energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–
1623, Aug. 2015.
[152] S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W.
Samuel, and H. Haas, “Organic solar cells as high-speed data detectors
for visible light communication,” Optica, vol. 2, pp. 607–610, 2015
[153] M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen,
H. Qin, and J. Xu, “Underwater wireless optical communication using a
lens-free solar panel receiver,” Opt. Commun., vol. 426, pp. 94–98, 2018.
[154] J. Fakidis, S. Videv, H. Helmers and H. Haas, “0.5-Gb/s OFDM-based
laser data and power transfer using a GaAs photovoltaic cell,” IEEE
Photon. Technol. Lett., vol. 30, no. 9, pp. 841–844, May 2018.
[155] H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini and
S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature
and salinity-induced oceanic turbulence," in 2018 Fourth Underwater
Communications and Networking Conference (UComms), Lerici, 2018,
pp. 1-4.
[156] D. Yao, B. Gao, H. Qiang, X. Wang, K. Wen, and D. Wang, “Laser wireless power transfer and thermal regulation method driven by transient laser grating,” AIP Adv, vol. 12, no. 10, Oct. 2022, doi: 10.1063/5.0106968.
[157] M. Bonnet-Eymard, M. Boccard, G. Bugnon, F. Sculati-Meillaud,
M. Despeisse, and C. Ballif, ‘‘Optimized short-circuit current mismatch
in multi-junction solar cells,’’ Sol. Energy Mater. Sol. Cells, vol. 117,
pp. 120–125, Oct. 2013, doi: 10.1016/j.solmat.2013.05.046.
[158] L. Peng, Y. Sun, Z. Meng, Y. Wang, and Y. Xu, ‘‘A new method for
determining the characteristics of solar cells,’’ J. Power Sources, vol. 227,
pp. 131–136, Apr. 2013, doi: 10.1016/j.jpowsour.2012.07.06
[159] D. Revati and E. Natarajan, ‘‘I-V and P-V characteristics analysis
of a photovoltaic module by different methods using MATLAB software,’’ Mater. Today, Proc., vol. 33, pp. 261–269, Jan. 2020, doi:
10.1016/j.matpr.2020.04.043.
[160] S. K. Vankadara, S. Chatterjee, and P. K. Balachandran, ‘‘An accurate
analytical modeling of solar photovoltaic system considering Rs and Rsh
under partial shaded condition,’’ Int. J. Syst. Assur. Eng. Manag., vol. 13,
pp. 2472–2481, Apr. 2022, doi: 10.1007/s13198-022-01658-6.
[161] J. H. Kim, Y. Lim, and S. Nam, “Efficiency bound of radiative wireless power transmission using practical antennas,” IEEE Trans Antennas Propag, vol. 67, no. 8, pp. 5750–5755, Aug. 2019, doi: 10.1109/TAP.2019.2922444
[162] J. Kao, C. Lin, C. Huang, and Y. Kuo, “Bidirectional wireless power/data transfer via magnetic field,” The Journal of Engineering, vol. 2022, no. 7, pp. 701–714, Jul. 2022, doi: 10.1049/tje2.12150.
[162] X. Li, J. Hu, Y. Li, H. Wang, M. Liu, and P. Deng, “A decoupled power and data-parallel transmission method with four-quadrant misalignment tolerance for wireless power transfer systems,” IEEE Trans Power Electron, vol. 34, no. 12, pp. 11531–11535, 2019, doi: 10.1109/TPEL.2019.2920441.
[163] Z. Yan, Z. Xiang, L. Wu, and B. Wang, “Study of wireless power and
information transmission technology based on triangular current
waveform,” IEEE Trans. Power Electron., vol. 33, no.2, pp. 1368–1377,
Feb. 2018
[164] Y. Son and B. Jang, “Simultaneous data and power transmission in
resonant wireless power system,” in Proc. Asia-Pac. Microw.Conf. Proc.,
Jan. 2013, pp. 1003–1005
[165] G. Wang, P. Wang and Y. Tang, “Analysis of dual band power and data
telemetry for biomedical implants,” IEEE Trans. Biomed. Circuits Syst.,
vol. 6, no. 3, pp. 208-215, Jun. 2012
[166] Y. Sun, P. X. Yan, Z. H. Wang and Y. Y. Luan, “The parallel transmission
of power and data with the shared channel for an inductive power transfer
system,” IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5495-5502,
Aug. 2016.
[167] X. Li, C. Tang, X. Dai, P. Deng and Y. Su, “An inductive and capacitive
combined parallel transmission of power and data for wireless power
transfer systems,” IEEE Trans. Power Electron., vol. 33, no. 6, pp.
4980-4991, Jun. 2018.
[168] R. G. Ayestarán, G. León, M. R. Pino, and P. Nepa, “Wireless Power Transfer Through Simultaneous Near-Field Focusing and Far-Field Synthesis,” IEEE Trans Antennas Propag, vol. 67, 2019, doi: 10.1109/TAP.2019.2916677.
[169] S. Yu, H. Liu, and L. Li, “Design of near-field focused metasurface for high efficient wireless power transfer with multi-focus
characteristics,” IEEE Transactions on Industrial Electronics, pp.
1–1, 2018
[170] J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Rectilinear
leaky-wave antennas with broad beam patterns using hybrid
printed-circuit waveguides,” IEEE Transactions on Antennas and
Propagation, vol. 59, no. 11, pp. 3999–4007, Nov 2011.
[171] A. J. Mart´ınez-Ros, J. L. Gomez-Tornero, F. J. Clemente- ´
Fernandez, and J. Monz ´ o-Cabrera, “Microwave near-field focus- ´
ing properties of width-tapered microstrip leaky-wave antenna,”
IEEE Transactions on Antennas and Propagation, vol. 61, no. 6,
pp. 2981–2990, June 2013
[172] R. G. Ayestaran, “Fast near-field multifocusing of antenna ar- ´
rays including element coupling using neural networks,” IEEE
Antennas and Wireless Propagation Letters, vol. 17, no. 7, pp.
1233–1237, July 2018
[173] J. Alvarez, R. G. Ayestaran, G. Leon, L. F. Herran, A. Arboleya,
J. A. Lopez-Fernandez, and F. Las-Heras, “Near field multifocusing on antenna arrays via non-convex optimisation,” IET
Microwaves, Antennas Propagation, vol. 8, no. 10, pp. 754–764,
July 2014.
[174] J. Alvarez, R. G. Ayestaran, and F. Las-Heras, “Design of antenna
arrays for near-field focusing requirements using optimisation,”
Electronics Letters, vol. 48, no. 21, pp. 1323–1325, October
2012.
[175] D. A. M. Lero, L. Crocco, and T. Isernia, “Advances in 3-d
electromagnetic focusing: Optimized time reversal and optimal
constrained power focusing,” Radio Science, vol. 52, no. 1, pp.
166–175, Jan 2017.
[176] G. G. Bellizzi, D. A. M. Iero, L. Crocco, and T. Isernia, “Threedimensional field intensity shaping: The scalar case,” IEEE
Antennas and Wireless Propagation Letters, vol. 17, no. 3, pp.
360–363, March 2018.
[177] G. G. Bellizzi, M. T. Bevacqua, L. Crocco, and T. Isernia, “3-d
field intensity shaping via optimized multi-target time reversal,”
IEEE Transactions on Antennas and Propagation, vol. 66, no. 8,
pp. 4380–4385, Aug 2018
[178] M. Uysal, S. Ghasvarianjahromi, M. Karbalayghareh, P. D. Diamantoulakis, G. K. Karagiannidis, and S. M. Sait, “SLIPT for Underwater Visible Light Communications: Performance Analysis and Optimization,” IEEE Trans Wirel Commun, vol. 20, no. 10, pp. 6715–6728, Oct. 2021, doi: 10.1109/TWC.2021.3076159
[179] Y. Zhang and C. You, “SWIPT in Mixed Near- and Far-Field Channels: Joint Beam Scheduling and Power Allocation,” Oct. 2023, [Online]. Available: http://arxiv.org/abs/2310.20186
[180] Y. Zhang, X. Wu, and C. You, “Fast near-field beam training for
extremely large-scale array,” IEEE Wireless Commun. Lett., vol. 11,
no. 12, pp. 2625–2629, Dec. 2022.
[181] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, and Y. C. Eldar, “Near-field Wireless Power Transfer for 6G Internet-of-Everything Mobile Networks: Opportunities and Challenges,” Aug. 2021, [Online]. Available: http://arxiv.org/abs/2108.07576
[182] M. Song et al., “Wireless power transfer based on novel physical concepts,” Nature Electronics, vol. 4, no. 10. Nature Research, pp. 707–716, Oct. 01, 2021. doi: 10.1038/s41928-021-00658-x.
[183] E. Shi et al., “Wireless Energy Transfer in RIS-Aided Cell-Free Massive MIMO Systems: Opportunities and Challenges,” Jan. 2022, [Online]. Available: http://arxiv.org/abs/2201.11302
[184] W. Zhou and K. Jin, “Power control method for improving efficiency of laser-based wireless power transmission system,” IET Power Electronics, vol. 13, no. 10, pp. 2096–2105, Aug. 2020, doi: 10.1049/iet-pel.2019.1372.
[185] H. Yigit and A. R. Boynuegri, “Pulsed Laser Diode Based Wireless Power Transmission Application: Determination of Voltage Amplitude, Frequency, and Duty Cycle,” IEEE Access, vol. 11, pp. 54544–54555, 2023, doi: 10.1109/ACCESS.2023.3281656.
[186] B. Hu et al., “A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier,” Energy Reports, vol. 7, pp. 1154–1161, 2021, doi: 10.1016/j.egyr.2020.12.026.
[187] Y. Park and D. Youii, “KW-class wireless power transmission based on microwave beam,” in 2020 IEEE Wireless Power Transfer Conference, WPTC 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 5–8. doi: 10.1109/WPTC48563.2020.9295626.
[188] J. H. Park, D. In Kim, and K. W. Choi, “Experiments and modeling of 5.8GHz microwave wireless power transfer with multiple antennas,” in 2020 IEEE Wireless Power Transfer Conference, WPTC 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 115–118. doi: 10.1109/WPTC48563.2020.9295530.
[189] J. H. Park, D. In Kim, and K. W. Choi, “Experiments and modeling of 5.8GHz microwave wireless power transfer with multiple antennas,” in 2020 IEEE Wireless Power Transfer Conference, WPTC 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 115–118. doi: 10.1109/WPTC48563.2020.9295530.
[]
No hay comentarios.:
Publicar un comentario